
www.manaraa.com

ISSN 1975-4736 ©MITA 2009 1

Widget-based Web Development: Basic Ideas

Daeyong Shin*, Sugwon Hong*

* Dept. of Computer Software, University of Myongji, Korea
E-mail: dosuser@naver.com, swhong@mju.ac.kr

Abstract

Current web frameworks provide “code-reuse” for
efficient and fast web development, but do not support
“concept-reuse.” In this paper we propose the basic ideas
of widget-based web development which can provide
“concept-reuse.” In this scheme, widgets are the key
elements which can integrate web services and user
interfaces. To use “concept-reuse” in the application level,
categorization will be used with widgets. A widget is
considered as a web application unit, and new
applications are made by widgets. However, a widget is
designed as a standalone application, so there are
problems in integrating widgets. This paper proposes
methods to solve those problems.

1. Introduction

In the project development the user requirement analysis
and user interface (UI) development are more important
and critical than business logic or library implementation.
Reuse of business logics or components can increase
productivity. There are many techniques utilizing reuse to
improve productivity. But they are concentrated on “code
-reuse” but not “concept-reuse.” The frameworks, such as
Struts[1], just provide UI template, libraries, and the ways
to implement the model-view-controller (MVC) model
easily, but not the “concept-reuse” methods for
developing web applications. To utilize the concept-reuse,
the substance of concepts, the size of units which specify
the scope to be reused, applications and their parameters
should be clearly defined. But neither of them have been
discussed or standardized yet up to now.
 Web services provide the enhancement of business

process, flexibility, and expansion by reducing coupling
of business logics. It is also possible to quickly create
simple UI using the web service description language
(WSDL)[2] or the web application description language
(WADL) [3].

The Open API based on web service is used to publish
the web company’s service, bringing about more benefits
to the company. With the help of the Open API users can
develop their own applications using huge resources and
thus the company can attract more user traffic to its
service.,

Web development using Open API is called the mash-
up. It can create new services rapidly by mixing different
services rather than developing them separately. Also,
Open API provides complex UI supported by AJAX such
as the Google map. The Open API’s remarkable point is
the support of complex user interface. Figure 1 shows
how many times users mash up OPEN API provided by
the leading web company services. As shown in this
figure, the Google map is used most frequently.

Figure 1: Programmableweb’s API score[4]

However, the number and type of Open API is not

enough to make web applications using only Open API.
For this reason the Open API is not suitable to develop
enterprise applications or general web applications. As
mentioned, the integration of web services and user
interfaces has some merits. If web services and UI are
combined as one, the mash-up of web services will lead to
the mash-up of UI and then it is possible to reduce total
development time by eliminating UI development time.
 In this paper, we propose a widget-based web
application development method to integrate web services
and UI. In the proposed method, web services and UI are
regarded as a package by widgets[5]. The widget becomes
a unit of the concept which establishes the relation

www.manaraa.com

ISSN 1975-4736 ©MITA 2009 2

between applications by categorization. The semantic
metadata of UI, inter-applications relationship, function
that current widgets do not provide are additionally
provided by the Feature List.

2. Problem definition

2.1 Concrete concept of web application

For the automated mash-up development in application
level, each application’s concept must be clearly
described. In case of the bulletin board service (BBS),
each BBS has different requirements. So we need to
define the common requirements to satisfy all BBS’s.

2.2 Specification of meaning

It is difficult that a machine integrates applications just
using WSDL, WADL, widget and other metadata. For
example, a machine cannot tell if a web service is map-
related or search-related by using data types.

Data types of parameters and results are represented as
XML, but data meaning cannot be presented without
RDF[6] and Semantics[7].

2.3 User interface mash-up

The widget mash-up comes with the UI Mash-up. The UI
mash-up has some problems, such as the document object
model identification (DOM ID) collision, layout
positioning and script handling. Widgets are designed as
standalone application, so the interaction with the UI
layer, especially the data and event exchange, is the
biggest problem.

To focus on core competences can reduce the
development process time. The famous web frameworks
such as Struts and Spring[8] easily support templates,
libraries, the object-relational mapping (ORM)[9] and
MVC, but do not support “concept-reuse” for web
development.

Figure 2: web service category classification

3. Solutions

3.1 Application categorization

As mentioned, current web development frameworks
focus on the “code-reuse” rather than “concept-reuse”. As
the code generation technology based on XML is growing,
“code-reuse” does not become important. Although W3C
and the web leading companies have made many web
standards, they have not developed any standard for the
web application description that describes dependency,
configuration and logics of applications, UI language, and
so on.

The functional analysis of a web application is needed
to elicit the meaning of the application. The application’s
property is decided by eliciting the specific application’s
functions. Ideally, each web application should provide a
full detail of resources: abstract logic, existing resources
in an application, other applications required to run the
application, and resources resulted from the application.

All of each web application should have core
application descriptions (CAD). There are parent-child
relations between the extended application descriptions
(EAD) delegated from core application descriptions.
These CAD and EAD need to be categorized. And these
specifications should be implemented as a delegation of
CADs and they should exist as concrete specifications.
For example, the Ruby on Rails[10] reduces complexity
and code lines by the reuse technique called Scaffolding
that simply implements each application’s core functions.

Figure 2 shows how web service categories are
classified according to the UI dependency level. It is not
possible to develop enterprise applications by using only
web service categories shown in this figure.

Open API of the application layer is difficult to
integrate with the other application layer’s Open API. The
service categories in the UI component layer are able to
enhance the UI components. But the problem is that data
only comes from a remote server. The data service layer
provides only data management tools, but not database
itself. The base system layer provides services which
process complex logic. The outside system provides batch
processes.

Consequently it is difficult to make a Site Builder and
business-oriented web applications with only Open API.
Because the UI layer’s Open API does not handle a local
storage data and there are few services in the data service
layer, it is also hard to make a Site Builder and business-
oriented web applications. The base layer focuses on the
“heavy-processing-time” delivery, not a library.

3.2 Feature list exchange

Inter-applications relationship is described with
categorization such as CAD and EAD explained in

www.manaraa.com

ISSN 1975-4736 ©MITA 2009 3

section 3.1. In addition, the application’s feature must be
described to make the application flexible. Ideally, if all
information of the application is described with XML, the
applications are able to be connected each other. But since
it is too complicated to do so, we propose a black box
model. Figure 3 shows the black box model.
 In the black box model, an object B has to include all
features of an object A to act as A. When web services are
used, their data types are provided, but the meanings are
not provided. For authenticating a web service, if a
schema of identification (ID) and password is not
provided, a machine does not know which string data is
ID. So the black box must have the additional semantics
information for all data. Also the functions have
semantics information but the function is described by
application classification information. When there is no
proper classification to describe the black box’s whole
features, the developer must add a new classification and
include classification information to the feature list.
 Not only common resources but also all data and
functions are treated as resources. The black box needs
resources, process result resources, and context resources.

In figure 3, each block represents an application, and
each block’s circle is a resource. Each circle represents
classification of resources. As an application’s need for
resources concerns only the classification, not the type of
resources, type negotiation, included casting, is needed
when two blocks are connected. In this way the
integration of applications can be achieved with ease.

3.3 user interface mash-up

To solve the problems that are mentioned in the section
2.3, all of the scripts and DOM Objects must be analyzed
and reconstructed. The ID collision is a significant
problem in the UI mash-up. The solution is to add other
identifiers until the ID is completely unique. These
identifiers are the names of widgets, the name of widgets
combined, and the name of an application flow developed
by the widgets. The instance number can also be these
identifiers. The solution is used not only for HTML but
also for XML, ECMAscript and CSS.

Layout collision only occurs if a designer does not use
the standard. One layout overlaps another layout because
of using absolute position. So, it is recommended to
follow the web standard.

Form union based on Chusho‘s method[11] needs the
semantics of the form data. If the same semantics appears,
the first one is used.

Figure 4 shows that widgets are combined and an
application flow is made for sign-up. At each step, it is
progressing as each data model is filled with data. For the
widget-based development, this application flow is
represented by XML, and is translated into source codes
right before services are realized. The widgets in the same
page, which is the widgets in the same column in the

figure, have each instance number and are combined into
one widget.

Figure 3: The black box model

Figure 4: Application flow

 Figure 5 shows the process to assemble UI. After all

the HTML documents are disassembled into each element,
the rendering calculator obtains the layout size and each
element is combined to make XML information. The UI
pages based on XML are translated into XML information
using XSLT[12]. And then this XML information
generates HTML or the third-party UI language.

www.manaraa.com

ISSN 1975-4736 ©MITA 2009 4

Figure 5: UI generating process

4. Conclusions

In this paper, we propose the widget-based web
development method which can integrate web services
and UI in order to develop web applications and solutions
rapidly. The essence of this method is to use meaning of
all resources to integrate web application units which are
widget. The reason for using the meaning is that loosely
coupled data types cannot be used to integrate widgets.
When mash-up problems are solved and web application
interoperability is ensured, each vender will provide web
service suites where all resources for web development
are represented as widgets. This paper addresses basic
ideas and implementation and improvement of these ideas
will be left for further study.

Acknowledgements This work was supported by the
ERC program of MOST/KOSEF (Next-generation Power
Technology Center).

5. References
[1] The Apache Jakarta project, “STRUTS”, available from
http://jakarta.apache.org/struts/.

[2]S. Weerawarana, R. Chinnici, M. Gudgin, et al., “Web
Services Description Language (WSDL) Version 2.0 Part 1:
Core Language,” World Wide Web Consortium, 2004 August.,
http://www.w3.org/TR/2004/WD-wsdl20.

[3] M. J. Hadley, “Web Application Description Language
(WADL),” Sun Microsystems Inc., 2006 November.

[4]programmableweb, “The API Scorecard,” available from
http://www.programmableweb.com/scorecard

[5] M. Caceres, “Widgets 1.0: Packaging and Configuration,”
W3C Working Draft 31, 2009 January (Work in progress).

[6]G. Klyne and J. J. Carroll, “Resource Description Framework
(RDF): Concepts and Abstract Syntax,” W3C Working Draft,
2003, http://www.w3.org/TR/2003/WD-rdf-concepts-20030123.

[7]T. Berners-Lee., “Semantic Web Road Map,” available from
http://www.w3.org/DesignIssues/Semantic.html, 1998.

[8] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg and C.
Sampaleanu, “Professional Java Development with the Spring
Framework,” Wrox, 2005.

[9] D. Barry and T. Stanienda, "Solving the Java Object Storage
Problem," Computer, vol. 31, no. 11, pp. 33-40, Nov. 1998.

[10] D. H. Hansson, “Ruby on rails,” available from
http://www.rubyonrails.org

[11] T. Chusho, R. Yuasa, S. Nishida, and K. Fujiwara, “Web
Service Integration Based on Abstract Forms in XML for End-
user Initiative Development,” Proc. The 2007 IAENG
International Conference on Internet Computing and Web
Services (ICICWS'07), pp.950-957, Mar. 2007.

[12] J. Clark, “XSL Transformations (XSLT) Version1.0,”
http://www.w3.org/TR/xslt, November, 1999.

